

New Jersey Center for Teaching and Learning Progressive Mathematics Initiative ${ }^{\circledR}$

This material is made freely available at www.njctlorg and is intended for the non-commercial use of students and teachers.

These materials may not be used for any commercial purposes without the written permission of the owners. NJCTL maintains its website for the convenience of teachers who wish to make their work available to other teachers, participate in virtual professional learning community, and/or provide access to course materials to parents, students and others.

We, at the New Jersey Education Association (NJEA) are proud founders and supporters of NJCTL, an independent non-profit organization. NJEA embraces NJCTL's mission of empowering

4th Grade

Multiplication \& Division Relationship

2014-09-30
www.njetl.org

Slide 4 / 145

Table of Contents

Click on a topic to go to that section.

Multiplication Review

Properties of Multiplication
Factors
Prime and Composite Numbers
Multiples
Inverse Operations

Multiplication Review

Slide 5 / 145

Multiplication is a fast way of adding a series of repeated numbers
Using repeated addition or skip counting:
5×3 means $5+5+5$
$5 \times 3=15$
4×8 means $4+4+4+4+4+4+4+4$
$4 \times 8=32$
Or you can use a picture model:

Write an example of a multiplication sentence related to addition and solve it.

Return to table of contents

Slide 6 / 145

Place Value and Multiplying

Remember how each place value is 10 x's larger than the next?

If we take any of the place value units, the next unit on the left is ten times as many.

1 ten $=10 \times 1$ one (1 ten is 10 times as much as 1 one)
1 hundred $=10 \times 1$ ten
1 thousand $=10 \times 1$ hundred

Place Value and Multiplying

We can apply this knowledge with larger numbers whose digits are in the tens, hundreds, or even thousands!

Slide 9 / 145

What is the Trick?

$$
\text { What is } 6 \times 7=?
$$

What if we multiplied $60 \times 7=$?
First, we know the place value increases. You can also use the zero trick by covering up the zero, multiplying 6×7, which equals 42, then add the zero back onto your answer.

$$
6 \emptyset \times 7=42 \longrightarrow \text { Add zero to end to show } 60 \times 7=420
$$

What is 50×2 then? What about $70 \times 80=?$
Be careful, in this problem you have to cover up 2 zeros, which means you have to add 2 zeros at the end!

Place Value and Multiplying

We know that if a number is increasing in place value, we need to add the additional place value to our answer.

Let's look at some examples:

$$
\begin{array}{ll}
4 \times 4=16 & 5 \times 4=20 \\
4 \times 40=160 & 50 \times 4=200 \\
40 \times 40=1,600 & 50 \times 40=2,000
\end{array}
$$

$\underset{\sim}{\wedge}$ Can you see how the place value is getting larger with each equation? Do you notice a pattern?

It is important to understand how place value works, but there is a TRICK when multiplying numbers that end in zeros!

Slide 9 (Answer) / 145

1 What would the multiplication number sentence look like for the repeated addition problem,

$$
7+7+7+7 ?
$$

OA $7 \boldsymbol{+ 4}$
○B 7×7
○C 7×4
○D 4×4

Slide 12 (Answer) / 145

Slide 13 / 145

1 What would the multiplication number
sentence look like ff
addition problem,
$7+7+7$ + $\mathbf{7}$?
(A $7 \boldsymbol{+ 4}$
OB 7×7
OC 7×4
○ 4×4

2 What would the addition sentence look like for 3×4 ?

A $3+3+3$
B $4+3+4+3$
C $3+4$
D $3+3+3+3$

Slide 13 (Answer) / 145

Slide 14 / 145

2 What would the addition sentence look like for 3×4 ?

A $3+3+3$
B $4+3+4+3$
C $3+4$
D $3+3+3+3$

3 What is the answer to $90 \times 80=$?

○A 72
OB 720
Oc $\mathbf{7 , 2 0 0}$
OD 72,000

3 What is the answer to $90 \times 80=$?

A 72
OB 720
OC 7,200
OD 72,000

4 Select the statement that explains how the numbers 55 and 550 are different.

A 550 is 1000 times larger than 55.
OB 550 is 100 times larger than 55.
OC 550 is 10 times larger than 55.
OD 550 is 1 times larger than 55.

Slide 15 (Answer) / 145

4 Select the statement that explains how the numbers 55 and 550 are different.

A 550 is 1000 times
O 550 is 100 times
OC 550 is 10 times
OD 550 is 1 times lar

5 What is $40 \times 600=$?

A $\mathbf{2 , 4 0 0}$
OB 24,000
Oc 240
OD 24

Slide 16 / 145

Slide 17 / 145

5 What is $40 \times 600=$?

O $\mathbf{A}, 400$
OB 24,000
Oc 240
OD 24

The numbers in a multiplication sentence are

 represented by factors and the product.[^0]

9 What is the product for 7(9)?

Slide 22 / 145

Arrays

Multiplication sentences can also be represented using picture models called arrays.

For example:

$$
2 \times 5 \text { means } 2+2+2+2+2
$$

$2 \times 5=10$
4×6 means $4+4+4+4+4+4$ $4 \times 6=24$
$3+3+3+3$ means 3×4 $3 \times 4=12$

Slide 23 (Answer) / 145

Arrays

Create a multiplication sentence, draw a picture to represent your values.

9 What is the product for

Slide 23 / 145

Arrays

Array sentences are written with the number of rows first and the number of columns second.

A Create a multiplication sentence, draw a picture to represent your values.

Slide 24 / 145

Arrays

Drag arrows into each rectangle to make the arrays. How are they the same? Different?今
5×2
2×5

Arrays 1. On a dot paper, draw several arrays 2. Trade your paper with a partner and label your partners arrays with.the.appropriate multiplication sentence inside or next to the drawing. Example:	Arrays 1. On a dot pape 2. Trade your partners ary sentence Print off the dotted paper on the next slide for each student in your class. You may want more than one paper per Example: student. You could also use geo-boards if you have enough per student with rubber bands.
Slide 26 / 145	Slide 27 / 145
	10 Which array is a model for 3×4 ? D none of the above

Slide 27 (Answer) / 145

10 Which array is a model for 3×4 ?

11 This array shows:

$O \mathbf{A}$	1×3
$\bigcirc \mathbf{B}$	3×1
$O \mathbf{C}$	3×0
$O D$	0×3

Zero Property

Any number multiplied by 0 is always zero

$$
0 \times 3=0+0+0=0
$$

$$
6 \times 0=0
$$

You can also use variables to represent any value

$$
0 \times m=0
$$

Ary this:

If Jackie has 5 hats and zero marbles in each hat. How many marbles does she have in all?

Identity Property

Any number multiplied by ONE is always the original number

$$
\begin{aligned}
5 \times 1 & =5 \\
1 \times 2,345,407 & =2,345,407
\end{aligned}
$$

Try this:
Solve for p in the following: $\quad 234 \times p=234$

What tools did you use to find your answer? Tell a partner.

Slide 35 / 145

Multiplication Properties

 property is represented in all 3 equations, then discuss how you determined the value of the variable in each one.

Property:

1. $234 \times 1=z$
2. $q \times 2,567=2,567$
3. $98,765 \times d=98,765$ \qquad

Slide 36 (Answer) / 145

13 Is $7 \times 0=0$ an examr
Yes
No Yes

Slide 36 / 145

13 Is $7 \times 0=0$ an example of the Zero Property?
OYes
Ono

Slide 37 / 145

14 Which equation is representing the Identity Property?

$$
\begin{aligned}
& \text { A } 8 \times 8=64 \\
& \text { O } 90 \times 1=1 \\
& \text { C } 36 \times 2=36 \times 2 \\
& \text { D } 4 \times 1=4
\end{aligned}
$$

Slide 41 / 145

\square

Commutative and Associative Properties

Move the definitions and examples below to the appropriate column.

Keeps the same numerical Can reorder numbers in order, but parenthesis move the expression
$3 \times 5=5 \times 3 \quad 5 \times(7 \times 2)=(5 \times 7) \times 2$

Commutative Property

The commutative property of multiplication means the order of the numbers does not change the result (answer) of the problem

Try This:
How can you finish the equation using the Commutative Property?
$7 \times 4=$? \times ?

Slide 40 / 145

Associative Property

$$
6 \times(5 \times 2)=(2 \times 5) \times 6 \text { Watch out! }
$$

Click here for the answer...

Slide 42 / 145

Distributive Property

In the Distributive Property, you distribute, pass, or hand out multiplication to numbers within parenethsis using addition or subtraction.

There are 2 common ways to use this property

Distributive Property

\#1: You can use it to find math facts that can be difficult to remember...
Lets solve $6 \times 12=\mathrm{A}$ by distributing 6 into parts of 12
Step 1: Break 12 into easier numbers you can multiply. We know $10+2=12$, right? So...
Step 2: ...if we distribute (pass out) 6 to both digits, we will have $(6 \times 10)+(6 \times 2)$

Step 3: Solve the equation starting with multiplication.
$6 \times 10=60+6 \times 2=12$

Slide 44 / 145

Let's Practice!

How can you solve 8×13 by using the Distributive Property? First, let's think of an easy way to break apart the larger number...
ξ_{0}
What are possible numbers that add up to equal $13 ?$
Does it make more sense to use $10+3=13$ or $8+5=13$? Why?

Let's use $10+3$, so applying the Distributive Property to solve would look like this...

$$
\begin{gathered}
8 \times 13=(8 \times 10)+(8 \times 3) \\
=80+24 \\
=104
\end{gathered}
$$

Derived from engage ${ }^{\text {ny }}$

Distributive Property

\#1: You can use it to difficult to remembe
Lets solve $6 \times 12=$
Step 1: Break 12 int $\mathbf{Z}_{\mathbf{Z}}$
know $10+2=12$, rié
$\frac{\text { Step 2: ...if we distrig }}{\text { have }} \frac{(6 \times 10)+\sqrt{6}}{6}$
Step 3: Solve the equ
This property will be more developed in the next unit with multi-digit multiplication through the array model

Answer: 12 can be distributed by: $6 \times(6+6) \quad 6 \times(8+4)$ $6 \times(5+7)$ and so on...as long as the numbers add to 12

$$
\begin{aligned}
& 6 \times 10=60+6 \\
& 60+12=72
\end{aligned}
$$

What is another way you could distribute 12 to solve?
Look in teacher notes for answers

Slide 45 / 145

Let's Practice!

How can you solve 8×13 by using the Distributive Property?

Can you solve 8×13, by distributing 13 using the numbers 8 and 5 ? What is your answer?

Slide 46 / 145

Slide 47 / 145

Your Turn

With your elbow partners solve the following using the distributive property. Remember to first decide what 2 numbers make the larger number easier to solve with. For example, in \#1, does it make more sense to break 12 into $6+6$ or $10+2$? Show your work!

1. $6 \times 12=$
2. $34 \times 8=$
3. $42 \times 4=$

Distributive Property

\#2 You can solve an equation with parenthesis by distributing the number on the outside to digits on the inside.

Remember a

$6(9+5)=(6 \times 9)+(6 \times 5)$
$45+30$
$=75$ that is the function inside the parenthesis.
number next to
$=75$
to multiply!

Try this using the distributive property: $9(8+6)=$

16 A candy company has orders for chocolate bars from 5 different stores. Each order contains 45 chocolate bars. Choose the equation vou should use to figure out how many che needs to make. S

$$
\begin{aligned}
& \text { A } 4 \times 50=(5 \times 40)+(5 \times 5) \\
& \text { ○B }(45 \times 5)-\frac{\text { 震 }}{4} \\
& \text { C }(30 \times 5)+(\\
& \text { D }(5 \times 40)+(\\
& =225
\end{aligned}
$$

Slide 52 (Answer) / 145

17 Is $8 \times(9 \times 3)=9 \times(8 \times 3)$ an example of the

Slide 52 (Answer) / 145

17 Is $8 \times(9 \times 3)=9 \times(8 \times 3)$ an example of the Associative Property? Explain your answer.

OTrue
OFalse

Slide 54 / 145

Slide 54 (Answer) / 145

19 In the Commutative Property, you can switch the numbers around and still get the same answer.

OYes
ONo

19 In the Commutative Property, you can switch the numbers around and still not the camo ancwar.

20 Which two equations represent the statement "48 is 6 times as many as $\mathbf{8}$?" Select the two correct answers.$48=6+8$$48=6 \times 8$$48=6 \times 6$$48=8+6$$48=8 \times 6$

From PARCC sample test

20 Which two equations represent the statement "48 is 6 times as many as $\mathbf{8}$?" Select the two correct answers.$48=6+8$$48=6 \times 8$$48=6 \times 6$$48=8+6$$48=8 \times 6$

From PARCC sample test

Slide 56 / 145

21 Rewrite the expression 8(4+3) using the Distributive Property of Multiplication. Then simplify your answer.

Slide 56 (Answer) / 145

21 Rewrite the expression 8(4+3) using the Distributive Property of Ma, iltinlination Than simplify your answ
$(8 \times 4)+(8 \times 3)$
$32+24$
$=56$

Slide 57 / 145

22 What property is being respresented by $8 \times 3=24$;

$$
3 \times 8=24 ?
$$

OA Identity Property
OB Commutative Property
OC Associative Property
OD Zero Property

23 Which property is being demonstrated in $7 \times 16=(7 \times 10)+(7 \times 6)$

OA Distributive Property
OB Associative Property
OC Idenity Property
OD Commutative Property

23 Which property is being demonstrated in
$7 \times 16=(7 \times 10)+(7$
OA Distributive Pro
OB Associative P审
OC Idenity Proper
OD Commutative PI_{1}
A

Slide 60 / 145

25 Which set of number sentences show the commutative property?

OA	$7 \times 3=21$	$7+7+7=21$
OB	$4 \times 1=4$	$0 \times 4=0$
OC	$8 \times 2=16$	$2 \times 8=16$
OD	$3+3=6$	$2+2+2=6$

$7 \times 3=21$
$7+7+7=21$
() $4 \times 1=4$
$0 \times 4=0$

OD $3+3=6$
$2+2+2=6$

24 Which property is shown?

$$
\begin{aligned}
& 5 \times 4=20 \\
& 4 \times 5=20
\end{aligned}
$$

$\bigcirc \mathrm{A}$ Identity
OB Commutative
OC Zero
OD Same

25 Which set of number sentences show the commutative propert

$O A$	$7 \times 3=21$
$O B$	$4 \times 1=4$
$O C$	$8 \times 2=164$
OD	$3+3=6$

C

Slide 62 / 145

What is a FACTOR?

What is the multiplication sentences represented by these arrays?

$\times \times \times \times \times \times \times \times$

click to reveal

Both arrays equal the product of 8. Remember, factors are 2 numbers multiplied to get a given product. Factors, 1×8, and 2×4 both multiply to equal the product 8 . So we know the factors of 8 are: 1, 2, 4, 8
Return to table of contents

Slide 60 (Answer) / 145

Slide 61 / 145

Factors

What is a FACTOR？

You can represent given factors by using a factor rainbow．
1248
\checkmark

Derived from engage ${ }^{\text {ny }}$

Slide 64 ／ 145

Factor Rainbows

Factor Rainbows help organize the numbers and allow you to check your work to make sure you find ALL factors．
Lets factor 12：Look at the following arrays．What multiplication

Slide 65 ／ 145

Factor Rainbows

\star Draw another array to represent another pair of factors for 12. Now rewrite all the factors found for 12 using a factor rainbow． sentence are they showing？

へ人へへへへ
今人へへへ人へへへへ人へ へへへへへへ

$$
1 \times 12=12
$$

$$
2 \times 6=12
$$

Circle the factors．Write these factors in numerical order using the factor rainbow．

Derived from engage ${ }^{\text {ny }}$
Derived from engage ${ }^{\text {ny }}$

Slide 66 ／ 145

Helpful Hints

1．Always start factoring with the number and 1.
2．Even numbers always have 2 as a factor．You will need to find the number that multiplies with 2 that equals the given number to know the factor pair！
3．Numbers with 5 as a factor have a 0 or 5 in the ones place value．
4．If you make a factor rainbow，and cannot connect a number to another factor it could be．．．．
－You forgot to find the other factor and should do so．
－The other factor is the same number．
For example：Take the number 9 ．
The factors are 1，3， 9

3. Previously we found 3 and 18 are factors.
4. Then 4 and so on, until you each 12.

Is it necessary to divide to find if 5 is a factor of 54 ?

Slide 73 (Answer) / 145

Factors

Using the strategies we just covered, multiplication facts and division, let's find the factor pairs of 60.

4. Now we need to look at 4. Use division again.
5. Now keep working through the digits until you find the rest of the factors.

What are all of the factors?

Slide 74 (Answer) / 145

Analyzinn tho Numhore

Derived from engage ${ }^{\text {ny }}$ Associative Property can help us find factors!!!

Factors

Using the strategies we just covered, multiplication facts and division, let's find the factor pairs of 60 .

Factor 60:

1. We know 1 and 60 are the beginning factors
2. Now we think about the number 2 , is 60 an even or add number? It's even so 2 is a factor now we need to find how many 2 s
3. What about 3? Let's use division to find out.

$$
\begin{aligned}
& 20 \\
& 3 \longdiv { 6 0 } \\
& -\frac{6}{00}
\end{aligned}
$$

Factor Pairs		
1	60	
2	30	
3	20	
4	15	

4. Now we need to look at 4. Use division again.
5. Now keep working through the digits until you find the rest of the factors.
What are all of the factors?

Slide 74 / 145

Analyzing the Numbers

Is 6 a factor of 54 ?
If we know 6 is a factor can we say that 2 and 3 are also factors of 54 ? Is the following multiplication sentence true?

$$
54=6 \times 9=(2 \times 3) \times 9
$$

If we rewrite it vertically we can see how 6 relates to 2 and 3

$$
\begin{aligned}
54 & =6 \times 9 \\
& =(2 \times 3) \times 9
\end{aligned}
$$

Remember the Associative Property? Lets use it to socialize 3 with 9 to check if 2 and 3 are really factors.

$$
\begin{array}{ll}
54=2 \times(3 \times 9) \\
54=2 \times 27 \\
54 & =54
\end{array} \quad \begin{aligned}
& \text { This proves } 2 \text { and } 27 \\
& \text { are a factor pair of } 54
\end{aligned}
$$

Derived from engage ${ }^{\text {ny }}$ Associative Property can help us find factors!!!

Slide 75 / 145

Let's Practice using Associative Property

Is 6 a factor of 42 ? How do you know...
We know 6 is factor click

Let's use the Associative Property to determine if 2 and 3 are also factors of 42.

$$
\begin{aligned}
& 42=6 \times 7 \\
& 42=(2 \times 3) \times 7 \\
& 42=2(3 \times 7) \\
& 42=2 \times 21 \\
& 42=42
\end{aligned} \begin{aligned}
& \text { Associative } \\
& \text { Property at } \\
& \text { work! }
\end{aligned}
$$

We can see that 2 is a factor of 42 because 2 and 21 are a factor pair that multply to equal 42 !

Factors Get with an elbow partner and answer the following. What is $6 \times 12 ?$ Work with your partner to prove 6 is a factor of 72 , so 2 and 3 must also be factors using the associative property. Now find all of the factors of 72 . Show your work.	Factors Get with an elbow partner and answer the following
Slide 77 / 145	Slide 77 (Answer) / 145
27 Is 5 a factor of 75 ? Show how you know on paper and be prepared to explain your answer. Yes No	27 Is 5 a factor of 75 ? Shnw hnw voir know an paper and be prepared Yes No Yes, because 75 has a 5 in the one place value. I can skip count or divide to show that $5 \times 15=75$.
Slide 78 / 145	Slide 78 (Answer) / 145
28 Select all of the factors for the number 27. hint: Make sure you think through each possible factor and make a factor rainbow before choosing an answer! A 1 B 2 C 3 D 4 E 5 F 8 9 12 14 27	28 Select all of the factors for the number 27. hint: Make sure you think throug' make a factor rainbc A 1 B 2 C 3 D 4 E 5 F 8 9 12 14 27

29 If 8 is a factor of 56 , can we also say that 4 and 2 are factors? Show your work and be ready to explain.

OYes
Ono

29 If 8 is a factor of 56 , can we also say that 4 and 2 are factors? Show explain.

Yes, by using the Associative property students should show $56=8 \times 7$
$=(4 \times 2) \times 7$
$=4 \times(2 \times 7)$
$=4 \times 14$

$$
=56
$$

Slide 80 / 145

30 Select the three choices that are factor pairs for the number 28.1 and 282 and 143 and 94 and 76 and 58 and 3

From PARCC sample test

Slide 80 (Answer) / 145

30 Select the three choices that are factor pairs for the number 28.1 and 282 and 143 and 94 and 76 and 5
A, B, D8 and 3

From PARCC sample test

Slide 81 (Answer) / 145

31 Which correctly lists all of the factors for 40 ?

A 1, 40
OB 1,2,3,4,5, 8, 2
(C $1,2,4,5,8,10$,
OD 1, 2, 20, 40

C
32 Which correctly lists all of the factors for
31 ?
OA 1, 31
OB 1, 3, 31
OC 1,3,9,31
OD 1, 3, 7, 9, 31

33 Which number is a factor of 22 ?

OA 44
OB 6
○c 8
OD 2

Slide 83 (Answer) / 145

33 Which number is a factor of 22?

OA 44
OB 6
OC 8
OD 2

Slide 84 / 145

34 Which number is a factor for 63 ?

OA 6
○ 10
Oc 3
OD 2

Slide 84 (Answer) / 145

Slide 85 / 145

34 Which number is a factor for $63 ?$
OA 6
OB 10
Oc 3
OD 2

35 What factors can you use in the following equation to make a product that is an odd number between 30 and 60? Mark the answer with all possible solutions.
\qquad X $5=$ \qquad

OA 6, 7 and 8
OB 7, 9 and 11
OC 7, 9, 11 and 13
OD 6, 7, 8, 9, 10 and 11

35 What factors can you use in the following equation to make a product that is an odd number between 30
utions.

Slide 86 (Answer) / 145

Using Factors with Area

Imagine Suzie and her friend trying to build a sand castle. They want the castle to be 24 squarf
possible side lengths their ca
Using our knowledge of facto lengths of the sides.

Remember the area form

Using Factors with Area

Imagine Suzie and her friend trying to build a sand castle. They want the castle to be 24 square feet when they are done. What are possible side lengths their castle could have?

Using our knowledge of factors and area, we can create different lengths of the sides.

Remember the area formula is length x width $\longrightarrow A=L \times W$

We know 2 and 12 are a factor pair of 24 so we can make a castle area using these as dimensions.
$3 \times 8=24$
8

Suzie could also build her castle 3 by 8 feet.

Slide 87 / 145

Using Factors with Area

Dillion needed to build a parking lot for the new high school. They needed it to be 100 square yards total in size. What are 3 possible dimensions Dillion could use to make his parking lot?

Slide 88 / 145

36 Craig's family decided that wanted to build a local neighborhood park. The city gave them 45 square yards to design their park in. What are possible dimensions that could have used to create it? (Select all that apply.)1 yard by 45 yards2 yards by 25 yards4 yards by 9 yards5 yards by 9 yards7 yards by 7 yards

Prime and Composite

Return to table of contents

Composite Numbers Try this: Is the number 45 a prime or composite number? Work with a partner creating a visual representation of why or why not. (Remember we have used arrays, factor tees, or factor rainbows to show our work.)	Sort the numbers into the columns.
Slide 97 / 145	Slide 98 / 145
In the case of 24 , you can find the prime factorization by taking 24 and dividing isotnivalitnienelennenate into 24: $24 \div 2=12$ Now divide outhe smallest nywner that goes into Please refer to the orfiginal Notebook fille	Exceptions There are 2 numbers that do not qualify as prime or composite. 0 and 1 0 is not classified by these terms because no matter what number you multiply it by, it is always zero. Therefore, 0 is neither prime or composite. 1 is not classified by these terms because mathematicians have agreed it is easier to define the structure of our number system without it classified. Therefore, 1 is neither prime nor composite. Derived from engage ${ }^{\text {ny }}$
Slide 99 / 145	Slide 100 / 145
Click for game. fruit shoot Primes - Composites Prime numbers are numbers that can only be divided by themselves and. the number 1.* Examples: 2, 3. 5 All other numbers are composite numbers, which means they can also be divided by other numbers. examples: 4. 6. 10 *The number 1 is not a prime number or composite number. PLAY	37 Sasha says that every number in the twenties is a composite number because 2 is even. Amanda says there are two prime numbers in the twenties. Who is correct? How do you know? A Sasha B Amanda

41 If you complete the following equation. Is the answer a prime or composite number?

$$
8+7+2+7
$$

A Prime
OB Composite

Circle the prime numbers to help the space shuttle to take off from Earth

Slide 106 (Answer) / 145

Return to table of contents

Slide 107 / 145

What is a Multiple?

Turn to a partner and skip count by 4s until your teacher says to stop!
Ready?

Continue to skip count with your partner, starting where you left off until your teacher tells you to stop again. See if you notice any patterns this time.

Derived frowngage ${ }^{\text {ny }}$

Slide 108 / 145

What is a Multiple?

When you skip count by any number, the numbers you say are called multiples.

Talk it out:
How is a multiple different than a factor?

Let's keep talking:
(small group or partners)
How do we know that 20 is a multiple of 4 ?
Is 20 a multiple of 5 ? How do you know?
What about 6 ? Is 20 a multiple of 6 ? How do you know?

Derived frorngage ${ }^{n y}$

What is a Multiple?

When you skip count by any number, the numbers you say are called multiples.

Derived fromgage ${ }^{n y}$

Multiples

What are multiples of 8 ?
click

Challenge question:

We know that $2 \times 4=8$, right? We can reason that 8 is a multiple of 2 and 4 because if we skip count by 2 , we get to 8 , or if we skip count by 4 , we also get to 8 .

If 8 is a multiple of 2 and 4, are multiples of 8 also multiples of 2 and 4? Let's find out by looking at 40, a multiple of 8 :

$$
\begin{aligned}
& 40=(5 \times 4) \times 2 \\
& 40=20 \times 2
\end{aligned}
$$

Yes, 40 is a multiple of
2. Counting 2 twenty times, gets 40.
Derived fromgage ${ }^{n y}$

$$
\begin{aligned}
& 40=5 \times 8 \\
& 40=5 \times(4 \times 2) \\
& 40=(5 \times 2) \times 4 \\
& 40=10 \times 4
\end{aligned}
$$

Yes, 40 is a multiple of 4 .
Counting 4 ten times, gets 40 .

Slide 110 / 145

Slide 111 / 145

Finding Multiples between 1-100

Take the number 84 .
Is 84 a multiple of the "number 4?

Think about ways you could solve this problem.

When determining if a number is a multiple of another number you use skip counting, or you can
 also use division. This is very helpful with larger numbers.

84 is a multiple of 4 because when you divide it out, there are no remainders.

Sorry thls element requires Flash, which tis not cucrently supported li PDFs.
Please refer to the ofiginal Nofebook flle

Slide 112 / 145

Slide 113 / 145

Click for interactive game practice.

42 List 3 multiples of 4.

43 Select all of the multiples of 6.A 54B 15C 42D 1E 35F 56

44 If you are trying to find multiples of 6, are you also finding multiples of 2 and 3 ?

OTrue
OFalse

Slide 115 / 145

Slide 116 / 145

45 If you know that $\mathbf{6 0}$ is a multiple of $\mathbf{6}$ ten times, is $\mathbf{6 0}$ also a multiple of 2 ?

OYes
ONo

Slide 115 (Answer) / 145

44 If you are trying to find multinlac af a arovir also finding multiples of

OFalse
True

Slide 116 (Answer) / 145

45 If you know that $\mathbf{6 0}$ is a multinle $n f 6$ ton times is $\mathbf{6 0}$ also a multiple of 2 ?

OYes
ONo

Yes

46 How many times do you count 2 in order to reach 60 ?

○A 15
○B 20
○C 25
OD 30

46 How many times do you count 2 in order to reach 60?

OA 15
OB 20
OC 25
OD 30

Slide 118 (Answer) / 145

47 Select each number that is a multiple of 8.
1
24364588
2080

From PARCC sample test

Slide 119 / 145

48 Select all of the multiples of 4.
\square A 4B 32
\square C 25
\square D 36
$\square E 22$

Slide 118 / 145

Slide 119 (Answer) / 145

47 Select each number that is a multinle of 8 .1
2
4
$\square 20$

From PARCC sample test

48 Select all of the multiples of 4.

A, B, D, and F

49 Megan's father won first place in a bicycle race. The race was divided into equal sections, each measuring exactly 7 miles in length. Which number could be the total number of miles of the race? Use your knowledge of multiples to solve.

○A 28
○B 45
○C 62
OD 15

49 Megan's father won first place in a bicycle race. The race was divided into equal sections, each measuring exactly 7 m : her could be the total nı your knowledge of

○A 28
○B 45
○C 62
OD 15

Slide 122 / 145

Hundreds Chart Activity:

By crossing out multiples of numbers, all of the prime numbers will be identified.

- Use red to cross out all of the even numbers ($2,4,6$, etc.)
- Use green to cross out all of the multiples
of 3 (3, 6, 9, etc.) that remain.
- Use purple to cross out the multiples of 5 that remain.
- Make a list of the remaining numbers. What kind of numbers are they?

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Slide 123 / 145

Return to table of contents

Connecting our Learning

Get with a partner and discuss:
What are 2 math functions you have been repeatedly working _click with throughout this unit?

Think about it \qquad $4 \times K=12$
$8 \times 2=$ Q
B X $5=40$

How do you know the answer to each equation?

What math function do you use to solve them?

Connecting our Learning

When solving a given equation or expression, you can use inverse operations, to find the solution. Inverse operations are the opposite operations that undo each other.

Now look at the examples from the previous page.
Would you change your answer on what operation you use to solve it?

What is different about how you solve $4 X K=12$

Slide 126 (Answer) / 145

Connecting our Learning

When solving a given equation or expression, you can use inverse
 operations that undo e-

Now look at
Would you chan。̈ what operation What is different范 the first examplet

Explain to the students: The difference is you use division to solve for the variable K, and you use multiplication to solve for the variable Q. In the first example, you UNDO multiplying, and divide to find the answer. You may also discuss with students how it seems easy because of knowing their math facts, but some numbers they may not know and will need to use the division process.
Multiplication and division are inverse operations. You can use each of them to undo the other in order to solve various equations.

Slide 128 / 145

Slide 128 (Answer) / 145

Helpful Hints with Inverse Operations

Inverse operations are used to solve unknowns in an equation.

- An unknown can be represented using a?, or a letter to stand for the missing number.
- A letter that stands for a missing number in an equation is called a variable.

Multiplication and division are inverse operations.

- Addition and subtraction are inverse operations.

Slide 127 / 145

Click below to watch a video

Multiplication and division are inverse operations. You can use each of them to undo the other in order to solve various equations.

Inverse Operations

Take the algebraic expression: $2 m=14$
(Remember 2 m means to multiply, 2 times the amount of " m ".)
Let's rewrite it so we see the multiplication sign:

$$
2 \times m=14
$$

Now, we need to "move" the 2 to the right side of the equation by dividing, which is the inverse operation of multiplication.

$$
\frac{2 \times m}{2}=\frac{14}{2} \longrightarrow m=14 \div 2
$$

The last step is to solve.
$m=7$, because 14 divided by 2 equals 7 .

Slide 130 (Answer) / 145

Fact Families Use Inverse Operations
Fact Families are an eası o the
numbers, 4, 7, and 28.

Write the new equation. Is there more than one way to write it?

Fact Families Use Inverse Operations

Fact Families are an easy way to use inverse operations. Take the numbers, 4,7 , and 28 . These numbers create a fact family using multiplication and division.

$$
7 \times 4=28
$$

$$
28 \div 7=4 \quad \text { is the division that undoes }
$$

$$
4 \times 7=28
$$

Try this: $72 \div 8=9$
What inverse operation can you use to undo this equation?
Write the new equation. Is there more than one way to write it?

Slide 131 / 145

Inverse Operations

Move equations to match each with its inverse.

$$
\begin{gathered}
24 \div 6=4 \quad 35 \div 7=5 \\
6 \times 10=60 \\
24 \div 5=35 \\
24 \div 3=8 \quad 4 \times 6=24
\end{gathered}
$$

Slide 132 / 145

Slide 133 / 145

Working out Word Problems

Using inverse operations to help solve word problems is an important tool to learn.
KAYLEE the Key will help guide you through the steps of problem solving
The K.E.Y.S. to Problem Solving
K: Know the important information in the problem. Read the problem (more than once) and first find the main idea. (MAIN IDEA = What is the problem asking you to find?) Find all the important information that supports the main idea.

E: Equation (or equations) is created to plan your strategy and organize the important information. Use equations to develop a strategy (i.e. algorithm, diagram). Strategy must be organized and easy to follow.

Y: Yes, I have checked over my strategy and my answer is reasonable (makes sense). Use an estimate to check if your answer is reasonable.

S: Solution is written in with the correct label and explanation if needed.

Inverse Operations Word Problems

The animal shelter has 18 kittens. The same
number
of kittens were born to each of 3 mother cats. How many kittens did each mother cat have?

Pull out the information you need to solve. 3, K, 18 kittens
Write the equation to solve the unknown value: $3 \times \square=18$
Solve $\quad 3 \times \square=18$
$18 \div 3=6$

Write your answer: Each mother cat had 6
kittens.

Inverse Operations Word Problems

The cost of buying a movie is 4 times as much as renting one. It costs $\$ 20$ to buy a movie. What is the cost, in dollars, of renting a movie?

Pull out the information you need to solve.
4, R, and \$20
Write the equation to solve the unknown value: $4 \times r=\$ 20$
Solve

$$
\begin{aligned}
& 4 \times r=20 \\
& r=20 \div 4 \\
& r=\$ 5
\end{aligned}
$$

Write your answer: It costs $\$ 5$ to rent a movie.

Inverse Operations Word Problems

Try this: With a partner read the following, write an equation, and solve using inverse operations.

A new video game you want is $\$ 42$. How much money do you need to save per week if you want to buy it in 7 weeks.

Slide 135 (Answer) / 145

Inverse Operations Word Problems

Try this: With a partn equation, and solve u:
$7 \times ?=42$
Use the inverse operation of multiplication to solve.
$42 \div 7=6$
$\$ 6$ per week would need to be saved.

Slide 136 / 145

Inverse Operations Word Problems

Try this: With a partner read the following, write an equation, and solve using inverse operations.

Stan was playing a game with this friend. His friend was trying to guess the number he was thinking of. Stan told him if he multiplied his number by 2 and added 9 the answer would be 21 . Write an equation. Then use inverse operations to solve.

Slide 136 (Answer) / 145

Inverse Operations Word Problems

ش
Try this: With a partner read the following, write an equation, and solve using inverse operations.

Slide 137 / 145

50 Division and multiplication are inverse

 operations.O True
OFalse

50 Division and multiplication are inverse operations.

OTrue
\bigcirc False

Slide 139 / 145

52 Which equation shows the inverse operation for the equation $5 \times 4=20$?
(A $\mathbf{2 0} \div \mathbf{4 = 5}$
OB $\mathbf{2 0} \div \mathbf{1 = 2 0}$
OC $20 \div 2=10$
OD $10 \times 2=20$

51 Which equation shows the inverse operation for the equation $63 \div 9=7 ?$

OA $3 \times 7=63$

- $7 \times 9=63$

C $21 \div 3=7$
OD 63-9=54

Slide 140 / 145

53 Use inverse operations to solve for the unknown in the equation.
$y \times 6=54$

53 Use inverse operations to solve for the unknown in the ennentian
$y \times 6=54$

Slide 140 (Answer) / 145

52 Which equation shows the inverse

Slide 139 (Answer) / 145

54 Use inverse operations to solve for the unknown in the equation.
$36 \div ?=9$

Slide 142 / 145

55 Use inverse operations to solve for the unknown in the equation.$x 8=48$

54 Use inverse operations to solve for the unknown in the ?

Slide 142 (Answer) / 145

55 Use inverse operations to solve for the unknown in the equa'
$\square \times 8=48$
$48 \div 8=\square$

Slide 143 / 145

56 Sammy's friend was trying to guess what number he was thinking of. Sammy told him if you multiply by 2 the answer is 24. What is Sammy's number? Write the equation showing the unknown value and solve using inverse operations.

○ 10
○B 48
OC 24
OD 12

56 Sammy's friend was trying to guess what number he was thinking of. Sammy told him if you multiply by 2 the answer is 24. What is Sammy's number? Write the equation shov
solve using inverse ol

○ 10
○B 48

OC 24
OD 12

$$
\begin{gathered}
2 \times ?=24 \\
\text { so, } 24 \div 2=? \\
?=12
\end{gathered}
$$

D is correct choice

57 Your teacher thinks of a number, divides it by 5 and then adds 19. The answer is 28 . What number did your teacher think of?

A 45
B 5
OC 28
OD 43

57 Your teacher thinks of a number, divides it by 5 and then adds 19. The answer is 28 . What number did your teacher think of?

○A 45
OB 5

OC 28
OD 43

Slide 145 / 145

58 Scott is reading a book that is 50 pages long.
Melanie is reading a book with 3 times as many pages. How many pages does Melanie's book have? Select the equation to represent this problem.$50 \div 3=$$50 \times 3=m$$3 \times m=50$$m \div 50=3$

[^0]: Factors - numbers you multiply with together to get another number (product)
 Product - the answer when 2 or more numbers are multiplied together

 Here are 2 ways to write a multiplication sentence.

